题目大意

给定$n$个矩形,对于每个$k\in [1,n]$,求解选$k$个不同矩形形成的面积并的期望。

解题思路

通过离散化+二位前缀和,求出被覆盖$i$次的面积记作$res[i]$。对于所有$k$,考虑求出被覆盖$i$次的面积的概率,总的情况是$C_n^k$,直接求出选到覆盖$i$次的这块面积的情况数量需要平方的复杂度,考虑正难则反(容斥),没选到这块面积的情况数就是我选的$k$次都是没有覆盖这块面积的矩形,即$C_{n-i}^k$,所以选到这块面积的情况数量就是$C_n^k-C_{n-i}^k$,概率就是$\frac{C_n^k-C_{n-i}^k}{C_n^j}$,期望即$\frac{C_n^k-C_{n-i}^k}{C_n^j}\times res[i]$。

时间复杂度$O(n^2)$

参考代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#include <bits/stdc++.h>
#define maxn 4010
#define int long long
using namespace std;
const double eps = 1e-8;
const int mod = 998244353;
int s[maxn][maxn], C[maxn][maxn], wk[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int x1_[maxn], y1_[maxn], x2_[maxn], y2_[maxn];
int res[maxn];
bool vis[maxn][maxn];
int nx[maxn], ny[maxn];

int qmi(int a, int b, int m) {
int res = 1; a %= m;
while(b) {
if(b & 1) res = res * a % m;
a = a * a % m;
b >>= 1;
}
return res;
}

void solve() {
map<int, int>xs, ys;
set<int> numx, numy;
int n; cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> x1_[i] >> y1_[i] >> x2_[i] >> y2_[i];
numx.insert(x1_[i]); numy.insert(y1_[i]);
numx.insert(x2_[i]); numy.insert(y2_[i]);
}
int curx = 0, cury = 0;

for (auto u : numx) {
xs[u] = ++curx;
nx[curx] = u;
}
for (auto u : numy) {
ys[u] = ++cury;
ny[cury] = u;
}
for (int i = 1; i <= n; ++i) {
s[xs[x1_[i]]][ys[y1_[i]]]++;
s[xs[x2_[i]]][ys[y1_[i]]]--;
s[xs[x1_[i]]][ys[y2_[i]]]--;
s[xs[x2_[i]]][ys[y2_[i]]]++;
}
for (int i = 1; i <= curx; ++i) {
for (int j = 1; j <= cury; ++j) {
s[i][j] = s[i][j] + s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1];
}
}

for(int i = 1; i < curx; i++) {
for(int j = 1; j < cury; j++) {
int dx = nx[i + 1] - nx[i];
int dy = ny[j + 1] - ny[j];
res[s[i][j]] = (res[s[i][j]] + dx * dy % mod) % mod;
}
}
for(int i = 1; i <= n; i++) {
int ans = 0;
int tt = qmi(C[n][i], mod - 2, mod);
for(int j = 1; j <= n; j++) {
ans = (ans + res[j] * (C[n][i] - C[n - j][i] + mod) % mod * tt) % mod;
}
cout << ans << '\n';
}

}

signed main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
for (int i = 0; i <= 2000; ++i) {
for (int j = 0; j <= i; ++j) {
if(j == 0 || j == i) C[i][j] = 1;
else C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % mod;
}
}
int t = 1;
while (t--) {
solve();
}
return 0;
}